Analysis of Civil Helicopter Accidents

Presented by Sandra Hart* on behalf of the Helicopter
Accident Analysis Team
at
HeliExpo '98
February 15, 1998

* Army/NASA Rotorcraft Division Ames Research Center Moffett Field, CA

% Helicopter Accidents by Event

From HAI Quarterly reports (1986-1996); n=1852

Category	<u>Percent</u>
Pilot error	21%
Engine	17%
Misc	12%
Loss of Control	11%
Collision w/object/ground	8%
Autorotation	7 %
Wirestrike	5%
Maintenance or material	7 %
Weather	4%
Loss of tailrotor control	3%
Fuel starvation	2%
Foreign object damage	2%
Ground coord	2%

% Helicopter Accidents by Type of Operation

From HAI Quarterly reports (1986-1996); n=1911

Category	Percent
Part 91 - Personal	20%
Part 91 - Instruction	14%
Part 91 - Other work	13%
Part 137- Air applications	11%
Part 135- Air Taxi	10%
Part 91 - Business	8%
Part 133- External load	6%
Part 91 - Ferry	2%
Part 91 - Airborne obs	4%
Part 91 - Positioning	4%
Part 91 - Public use	4%
Part 91 - Air applications	3%
Part 91 - Executive/corp	1%

Initial Analysis of ASRS Incident Data

Initial Analysis of ASRS Incident Data

Initial Analysis of ASRS Incident Data

Initial Role of Rotorcraft in Safety Program

System-wide accident prevention

- HEC Metrics
- Design Principles
 - Maintenance
 - Info integrity
 - Fatigue/perf readiness
 - Training

Lead R/C-specific R&D

Co-fund/perform R&D with industry

- Provide analysis, simulation, flight facilities
- Adapt results for R/C

Single-aircraft accident prevention

- R/C Pilot Aiding
- Cntrl in adverse cnd'n
- Flight Critical Systems
 - Tech Integration
 - Health Monitoring
- Design & Integration
- Engine Fail Cntnm't
 - Aging System

 Define R/C-specific technology & information requirements
 Interface with R/C community

- Define R/C-specific Wx rqmts
- Integrate Wx info into R/C cockpits & operations

Accident Mitigation

- Fire Prevention
- Crashworthiness
 - Evacuation

Aviation System Monitoring & Modeling

- Data Analysis/Sharing
 - Monitoring

Wx Accident Prvntn

- Strategic Weather
 - Synthetic Vision
- Weather Icing Turbulence

Safe All-Weather Flight of Rotorcraft (SAFOR)

Goal: Reduce the rotorcraft accident rate attributable to human factors and drivetrain malfunctions by a factor of five by the year 2007

Gear & Transmission Technologies

Drive System Components

Health & Utilization Monitoring (HUMS)

Human-Centered Cockpit Technologies

Flight Control & Guidance

Situation Awareness & Information Display

Rotorcraft Pilot Aiding

SAFOR Human-Centered Cockpit Tech

	Flight control & Guidance Tech	Situation Awareness & Info Displays
Prevention (Safety by Design)	Reduce pilot workload with: - Control system design tools - Partial authority SAS & ACAH	Reduce pilot workload thru: - Valid SA & perf models & measures for display design & evaluation - SA training module
Intervention (Real-time aiding)	Eliminate inadvertent envelope exceedence w/real-time pred, meas, cueing, and limiting for critical parameters & components	Avoid degraded perf thru: - Eval civil use of NVGs - Integrated display of clrnc, map, Wx, position, hazards
Mitigation (Recovery from a bad situation)	Ensure safe ops & handling qualities following loss of SA, failure of FCS, or single engine thru active control technology, trajectory optimization	Remedy impact of loss of SA, critical sytems recovery aids & displays

Safety-Related Work Performed under RITA/NRTC*

Aging Systems

- Damage Tolerance Technology for Helicopter Structures
- Field Corrosion and Fretting Fatigue Technologies
- Composite Struct. Design, Certification, Strength/Life Prediction

Health Monitoring

- Health and Usage Monitoring Systems (HUMS)Technology
- Structural Flight Loads Monitoring
- Cockpit Situational Awareness

Design Principles

- UltraSafe Transmission Design

Rotorcraft Pilot Aiding

- Helicopter Operations/Approach Using DGPS
- Rotorcraft Collision Avoidance

Synthetic Vision

- Synthetic Vision and 3D Display

Weather Icing

- Rotor System and Inlet Icing Protection Technology

Systems Approach to Crashworthiness

- Crash Safety / Bird Strike

* Rotorcraft Industry Technology Assn National Rotorcraft Technology Center

An Accident Sequence

Potentially Available Information

Coded data:

Who: Factual data about pilot, helicopter, company

When: Time of year/day; phase of flight

Where: Location, terrain, water/land, weather

What happened: Consequences (Event, Fatalities,...)

Why: Probable cause/contributing factor codes

Narrative data:

Who: Interviews, medical rpt, maintenance records, first-hand reports, etc

Where: Maps, photos, description, flight plan

What happened: Witness reports, survivor interviews, commo transcript, investigator's summary

Why: Investigator's inference about immediate cause(s), contributing factors, interviews, supporting docs

To Achieve Goal of Reducing Future Fatalities

Missing Information

To identify accident prevention & mitigation opportunities, more must be known about typical chains of events than in existing databases

Flight readiness

- Pilot state, time on duty, relevant experience
- Helicopter readiness
- Company culture/procedures
- Pre-flight plan/c/heck

Fatalities

System-wide information

- Link between incidents (precursors) and accidents
- Baseline data: exposure time, normal practices

Details

- Pilot's actions, internal comm
- Vehicle parameters
- Immediate env cond
- Human factors data

Accident Analysis Rationale

- Accidents are the result of a chain of events, rather than a single cause
- Future fatalities might be reduced by altering or eliminating one or more of the "links" in the chain
- Accident-prevention strategies can be identified by analyzing what happened in previous accidents (the chain of events) and brainstorming about what might have been done differently (potential solutions)
- Accident reports offer a window into civil helicopter operations through which system-wide problems can be identified

Accident Analysis Objectives

- Develop a list of accident prevention strategies based on detailed reviews of fatal helicopter accidents
- Assess the probable effectiveness of solution strategies upon reducing future accidents
- Recommend high-payoff research and technology development areas

Accident Analysis Overview

Accident Analysis Methodology (Preparation)

- Establish criteria for selecting accidents (at least one fatality; NTSB report available)
- Select team members (manufacturers, operators, relevant govt agencies)
- Address confidentiality issues
 (use publicly available data; accidents and brainstorming data confidential)
- Downselect accident subset:
 - Representative topics: pilot error, equipment failure, obstacle strike, weather, over-water, postcrash fire
 - Representative circumstances: flight conditions;
 type of operation; phase of flight; vehicle type
- Distribute full NTSB reports to team members

Team Members

Industry:

- Bell Helicopter Textron (Fox)
- The Boeing Co (Isbel, Wroblewski, Plaster)
- Sikorsky Aircraft Corporation (Cooper)
- Robinson Helicopters (Bressler)*
- Petroleum Helicopter, Inc (Old)
- National Helicopter (Smith)
- Columbia Helicopter (Warren)

Government:

- NASA (Elliott, Hart, Zuk, Dearing, Studebaker, Coy)
- US Army/NASA-ARC (Shively)
- FAA (McHugh, Wallace*, Smith)
- Battelle/ASRS (Morrison, Dodd)
- US Army Safety Center (Hicks)*
- NTSB (Borson)*

^{*} Were unable to attend most or all of the meetings

Characteristics of Accidents Analyzed

By Year

Year	%
1989	6
1990	24
1991	32
1992	6
1993	6
1994	26

By Phase of Flight

Phase	%
T/O	3
Climb	2
Cruise	24
Desc/Appr	8
Lndg	3
Mnvr'g	17
Hover	7
Other	3

By NTSB Event Code

Code/Event	%
130 Sys malfunct	10
220 Collision w/	
object	13
230 Collisionwith	
terrain/water	22
240 Inflt encounter	
w/Wx	9
250 Loss control	
inflight	18
270 Mid air	4
350 Loss of engine	
power	18

By Manufacturer

Mfg	%
Augusta	2
Aro'sptl	9
Bell	22
Hughes	12
MBB	4
MDH	6
Robinson	7
Sikorsky	3
Other	2

By Type of Operation

Type	%
Part 137	3
Pub Use	6
P-133	6
P-135	18
P-91	68

Methodology (Analysis Meetings)

- For each accident, 3 sub-groups:
 - Developed a sense of what happened from the text of the full report - - generated a Chain of Events
 - Brainstormed about Problems/Issues (looking beyond those immediately responsible for the accident)
 - Brainstormed about Solutions (what might have eliminated each link in the chain of events)
- Full team developed a complete list of Events, Problems, and Solutions
- Event, Problem, and Solution databases were "coded" to facilitate analysis and summary

Example of Analysis for One Accident

Eve	ent#	Chain of Events		
1		Load pax	5	Ditched in lake
2		Preflight helio	6	Helio capsized/sank
3		Begin takeoff	7	One pax drowned; trapped in seatbelt
4		Lost altitude	8	Rescue delayed
P #	RelEvr	nt Problem		Problem Category
1	1,6	Prefit brief too brief; no demo		Pax safety brief
2	2	Unclear-seatbelt demo done?		Info missing/incomplete
3	2	Power chk not done		Sense of urgency
4	2	No accurate wind information		Local/enroute Wx
5	3	Took off down wind		Plt failed to follow proced
6	4	Didn't monitor alt/spd		Plt diverted attention
7	6	Didn't arm/deploy floats		Plt failed to follow proced
8	6	Vehicle capsized then sank		Crshwrthns: imprv floats
9	7	Pax didn't/couldn't release seat	belt	Crshwrthns: imprv restraints
10	8	Rescue delayed no flt followi	ng	Automated flt following
<u>S#</u>	RePrb	Potential solutions		Solution categories
1	3	Require pax briefing in helio w/o	dem	o Safety culture
2	3,5,6	Improve pilot training		Training
3	3,5	Discourage hotdogging		Safety culture/Env limiting
4	4	Lo-cost local wx info at dispatcl	h	PC-based pre-flt planner
5	5,6	Better cockpit displays/warning		Real-time perf monitor
6	3,7	Electronic checklist-warn if mis	s st	ep Pilot aids
7	10	Low cost, automated flt following	ıg	Flt following
8	2	Record crew actions/vehicle sta	ite	CVR/FDR

Methodology (Wrap-up Meeting)

- Define protypical Chains of Events (illustrate problems/potential impact of solutions with hypothetical accidents)
- Summarize Problem categories; define
- Cluster prevention strategies; define
- Relate prevention strategies to Problem areas
- Project Problems/Solutions onto illustrative accidents
- Group prevention strategies into meaningful research areas; formulate safety investment recommendations
- Assess potential payoff (in terms of reducing future fatalities).
- Recommend improvements in the format and content of helicopter accident and incident information

Chain of Event Categories

Category	Examples of Events
Preliminary events	Definition: Factors that influenced the accident but were not directly related to actions taken by those involved in the accident Examples: Poor pilot health, limited pilot expereince, adverse Wx
Preflight events	Definition : Events that occurred prior to helo departure on accident flight that could have influenced the outcome. Examples : Obtaining Wx briefing in bad weather, or ensuring the aircraft had enough fuel are examples.
Flight-related events	Definition: Events or actions that occurred during the flight that were associated with the accident. <i>Examples:</i> Continued flight into adverse Wx, poor ATC vectoring
Emergency- related events	Definition: Events that occurred during the accident sequence itself. Examples: Poor landing site selection, wire strike, fuel starvation
Survival- related events	Definition: Events or actions that did, or could have, influenced occupant survival after the accident. Examples: Helmet use, delayed rescue, inop ELTs

Development of Illustrative Chains of Events

Eventsum	Events	EMS1	EMS2	EMS3	GM1	GM2	GM3	SS1	SS2	SS3	ENG1
Prelim Info	Night	A	В			В					A
	Adverse Weather	A				В		A			
	Mangement/ job assignment		В			В					
	Pilot health		В								
	Improper maint/inspection				A				В		A
	Military surplus aircraft/parts								В		
	Limited pilot expereince	A							В		A
	Personal stress										A
	Urgency of mission	A									
	Language difficulty										
Preflt	Received Wx brief	A	В			В		A			A
	Poor flight planning	A	В	С		В		A	В		A
	Company flight following	A	В	С		В		A			
	Poor safety briefing								В		
	Poor fuel planning					В					
	Poor instructor oversight										
	Fuel contamination/fueling										
	Mission urgency	A									
Flight	Continued flt into poor vis	A				В		A			A
	Did not declare emerg/IFR	A				В		A			A
	ATC vectoring inadequate		В								
	Poor use of/inadequate nav aids		В								
	Poor a/c location/sit aware	A	В					A			
	No warning of rising terrain		В					A			
	Continued flt w/ sys warning										A
	External load overgross										
	High altitude			С							
Emerg	Wire strike	A									
	Unability to know what pilot did	A	В		A	В		A			A
	Potential loss of spatial orientation	A				В		A			
	Poor landing site selection			С							A

Hypothetical Chain of Events x Potential Solutions

Preliminary Information

Night E/S Vision;

Weather Pre-flt Planner

Limited plt exp Basic, trans, emergtrain/exper

Urgent mission Co policies; Pre-flt risk assess sys

Preflight

Wx brief received

Poor flt planning Pre-flt Planner

Company flight foll Automated flt following

Flight

Cnt'dd flt poor vis E/S Vision; ADM train; inadv IMC policy

No emergency/IFR Recov from IMC train; IFR equip helo

Poor A/C location SA Electronic map+position+Wx+hazards

Emergency

Wire strike Obs detect/alert; Elec map+wire cut

Uncertain activity CVR/FDR; improved reports Spatial disorientation E/S Vision; Plt Assoc for R/C

Survival

Occupant thrown AC Restraint systems; Pre-flt pax brief

ELT Inoperative Crash-resistent ELTs

Problems

Problems/accident: Range = 3-21; Average = 16

Description: Problem "data" are assertions about or descriptions of issues or deficiencies noted by team

Presentation: The number of accidents in which the team identified a type of problem are presented as a rough measure of how prevalent it was

Organization: The problems were grouped into 56 subcategories, which were in turn combined into 14 categories related to flight readiness, inflight, post-crash, and data issues

Flight Readiness Problems

Category	SubCategory	#
Preflight	Acft/op limits not considered	6
Planning	Wx/wind not considered	6
	Mission rqmts/conting ignored	8
	Pre flight process inadequate	7
	Pax safety brief inadequate	3
Safety	Mgmt policies/oversight inadeq	13
Culture	Safety prgm/risk mgmt inadeq	13
	Helicopter not IFR equipped	4
	Didn't address plt health prblms	5
Training	Emergency training inadequate	6
	Special opn training inadequate	4
	Training vehicle too unforgiving	3
	Plt inexper w/ area, mission, helio	11
Main-	Tools to detect part fail inadeq	5
tenance	Bogus/surplus/unappr parts used	2
	Improper procedures/supervision	10
	Inadequate documentation	4
	Comp used not built to mfg spec	1

Inflight Problems

Category	SubCategory	
Pilot judg-	Sense of urgency>risk taking	
ment &	Diverted attention, distraction	
actions	Flight profile unsafe for cond	17
	Poor cockpit resource mgmt	6
	Perceptual judgment errors	
	Failed to follow procedures	14
	Pilot control/hndl deficiencies	8
	Used unauthorized equipment	1
Commu-	Coord w/ground personnel	3
nications	Coordination with ATC	
	Coordination with other pilots	3
Pilot	Aircraft position and hazards	12
situation	Aircraft state	5
awareness	Local and enroute weather	
Part/	Main rotor	1
system	Hydraulic system	
failure	Engine (partial or total)	
	Gear	1
	Tail rotor/tail boom	3
Cockpit	Poor positioning of cntrl/instru	5
layout		

Post-Crash SurvivabilityProblems

Category	SubCategory	#
Safety	Safety eqpt not installed/	13
equipment	failed	
	Pax/crew survival gear not used	8
Crash-	Vehicle did not withstand	8
worthiness	impact	
	Vehicle sank and/or	2
	capsized	
	Post-crash fire	9
Delayed	ELT inop/damaged by	5
rescue	impact	
	Inaccessible accident site/bad Wx	2
	No flt follow - slow to locate	4
	site	

Accident Survivability

Data/Database Problems

times cited

Relationship to NTSB Event Codes

Relationship to NTSB Phase of Flight Codes

Potential Solutions/accident: Range: 4-25; Average: 13

Description: Solutions are technologies or changes in procedures/policies that might have broken one link in the chain of events for one accident, or targeted underlying Problems. There may have been several Solutions suggested for any problem.

Presentation: The number of accidents for which the team suggested a type of Solution are presented as a rough measure of its potential utility for these 34 accidents.

Organization: The Solutions were grouped into 54 subcategories, which were in turn combined into 8 categories related to helicopter operations, design, and maintenance, data issues, and infrastructure.

Solution Category	Solution Subcategory	
Situation	 Ground prox warn sys for helo 	5
displays	 Electronic map/position 	7
	 Miscellaneous 	2
	 Obstacle detection & alerting 	14
	 Radar alt/dist from grnd/water 	9
	 Enhanced/synthetic vision 	10
	 Weather display and alterting 	6
Pilot	 Pilot's Associate for RC 	8
Aiding/	 Autorotation display/aid 	2
Auto-	 Envelope Limiting 	3
mation	 Automatic flight following 	6
	 PC-Based Pre-Flight Planner 	11
	 PC-Based Risk Assess Sys 	8
	 Attitude hold/stabilization 	1

Solution Category	Solution Subcategory	#
Safety	 Adequately equip helo for 	3
culture of	mission	
organ	 Inadvertent IMC policy 	2
	 Formalize pax pre-flt brief 	4
	 Company policies 	11
Training	 Aero decision making 	14
	 Basic trng materials/syllabus 	12
	• CRM	2
	 Recognize/resolve emrg 	5
	 FW-RW transition 	3
	 Ground personnel 	7
	 Recover from IMC/IFR 	3
	 Sim facilities for helo 	9
	 Unique ops/mnvers/missions 	11

Solution Category	Solution Subcategory	
Helicopter	• HUMS	17
design &	 Icing protection 	0
perf	 Misc design improvements 	10
	 Improved man/machine 	3
	interface	
	 Change in rotor 	3
	design/function	
	 Real-time perfmonitoring 	12
	 Low-speed wind sensors 	4
	 Wire cutters/hardened 	2
	blades	
Main-	 Maint issues for surplus mil 	2
tenance	 Non destructive inspection 	7
	techniques	
	 Impr maint proc/quality cntrl 	11

Solution Category	Solution Subcategory	
Post-	 Improved crashworthiness 	6
Crash	 Crash-survivable ELT 	5
Survival	 Survivability equipment 	9
	 Flotation systems 	9
	 Crash resistant fuel system 	13
	 Restraint systems 	10

Information Added by Analysis Process

NITOD D	DD ODLEM	0011171011
NTSB Description	PROBLEM	SOLUTION
	SubCategories	SubCategories
Event:	Inadequate plt exper-	Company policies
220 Inflt cllsn w/ obj	area,vehicle, mission	
Phase of Flight	Training inadequate for	Recovery from
540 (Cruise)	inadv IMC	inadv IMC training
Cause: 24023-3114-4000	Sense of rgency >	PC-based risk
Flt into known adv Wx-	taking risks	asses sys
intent-PinC	<u> </u>	
Cause: 24015-3102-4000	Preflight-ignored	Accurate Wx info at
VFR flt into IMC-Cont-PinC	mission ramts/conting	dispatch
Cause: 24518-3109-4000	Preflight- inadequate/	PC-based pre-
Alt-improp-PinC	hasty	flight planner
	Preflt-Wx not	Aero decision
	considered	making training
	Perceptual/judgment	Radar altimetry
	errors	forward and down
	Poor SA (local/enroute	Ground prox
	Wx)	warning for helio
	Poor SA	Display of map+Wx
	(position/hazards)	+hazards+position
	Adequately equip helio	E/S vision system
	for mission	L, O VISION System
	Tower/wire markings	Review twr/wire
	l G	
	inadequate Info unavailable to	mark rqmts
		Improved helio
	investigators	crshwrthnss
	Info not in report	CVR/FDR
		Imprv data acq

Examples of Safety Investment Areas

- CAVR/FDR
- HUMS (for maintainers & inflight)
- Cockpit information displays (e.g., E/S Vision, moving map, decision aids, obstacle detection)
- Training aids
- Tools for pre-flight planning.
- Tools to acquire, maintain, analyze & use safety data
- Methods to predict/measure safety improvements
- Automatic flight monitoring system
- Disseminate aircraft-centered, low-altitude Wx info

Status

- 34 fatal helicopter accidents analyzed
- Chain-of-Event, Problem and Solution databases developed, coded, and summarized
- Cross-correlation with NTSB codes completed
- Illustrative "accidents" created; narratives drafted, graphic re-enactments under development
- Safety Research Areas identified; narratives and recommendations being drafted
- Draft report being reviewed by team members
- Detailed analysis of helicopter incident data by ASRS staff requested